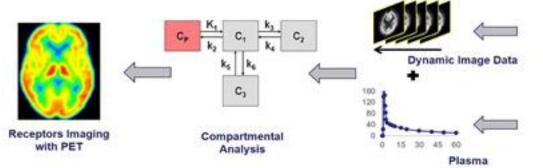
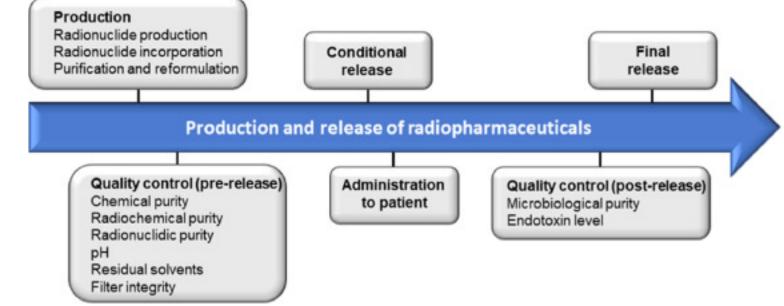
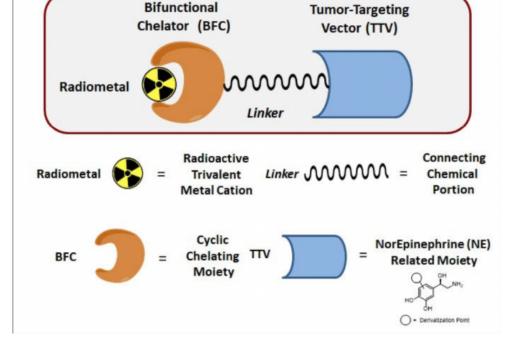

The problem of radiation safety in modern


nuclear medicine


Authors: Mikhail Parshenkov, 4th year student of Sechenov University; *Danila Petrusevich*, 5th year student of Sechenov University; *Polina Skovorodko*, 4th year student of Sechenov University; *Vladimir Shchekin*, 6th year student of Sechenov University, histologist and pathomorphologist of the Center for Preclinical Research

Project leader: *Galina Mikhailovna Rodionova*, Candidate of Pharmacy, Associate Professor, Associate Professor, A.P. Arzamastsev Chair of Pharmaceutical and Toxicological Chemistry, A.P. Nelyubin Institute of Pharmacy, FGAOU VO Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University)

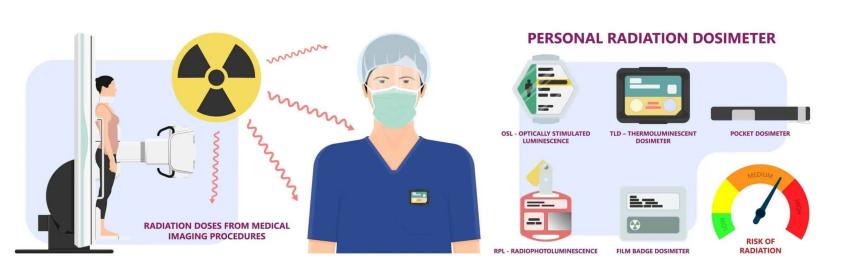


RadioPharmaceutical

Radioisotope	Half-life (t1/2)	Typical method of production	Decay of Radioisotope	Main Emission Energy used for imaging
Technetium-99m	6.0 hours	Generator	Isomeric transition $^{99m}_{43}\text{Tc} \rightarrow ^{99}_{43}\text{Tc} + \gamma$	140 keV
Iodine-123	13.2 hours	Cyclotron	Electron Capture $^{123}_{53}I + e^{-} \rightarrow ^{123}_{52}Te + \gamma$	159 keV
Gallium-67	78.3 hours	Cyclotron	Electron Capture $^{67}_{31}Ga + e^{-} \rightarrow {}^{67}_{30}Zn + \gamma$	93 and 185 keV
Indium-111	67.3 hours	Cyclotron	Electron Capture $^{111}_{49}In + e^{\cdot} \rightarrow ~^{111}_{48}Cd + \gamma$	171 and 245 keV
Thallium-201	72.9 hours	Cyclotron	Electron Capture $^{201}_{81}Tl + e^{-} \rightarrow ^{201}_{80}Hg + \gamma +$ x-ray (from Hg)	135 and 167 keV The lower energy x-rays obtained from the mercury- 201 (68.9 to 80.3 keV) can also be used for imaging

Goal of the research:

To familiarize the audience with the issue of radiosafety in nuclear medicine


Objectives of the research:

In the context of a study on radiation safety problems in modern nuclear medicine, the object of the study will be various aspects of the use of radioactive materials for medical purposes.

Materials and Methods:

- 1. Radioactive pharmaceutical products;
- 2. Equipment and technology;
- 3. Documents and Standards;
- 4* Environmental monitoring;
- 5* Experimental research;
- 6* Literature Review.

Table 1: Examples of SPECT radioisotopes commonly used in nuclear medicine; where Tc = technetium, I = iodine, Te = Main results: tellurium, Ga = gallium, Zn = zinc, In = indium, Cd = cadmium, Tl = thallium, Hg = mercury

Development of strategies and technologies for monitoring and managing the environmental impact of radioactive medicine

Introduction of modern research methods aimed at assessing and minimizing the impact of radioactive materials on the environment, ensuring sustainability and environmental safety in the field of nuclear medicine.